论文学习
Panoptic-DeepLab: Bottom-Up Panoptic Segmentation

发布于44个月以前

  • 0
  • 0
  • 176

发布于44个月以前

Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation

In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast inference speed. In particular, PanopticDeepLab adopts the dual-ASPP and dual-decoder structures specific to semantic, and instance segmentation, respectively. The semantic segmentation branch is the same as the typical design of any semantic segmentation model (e.g., DeepLab), while the instance segmentation branch is class-agnostic, involving a simple instance center regression. As a result, our single Panoptic-DeepLab simultaneously ranks first at all three Cityscapes benchmarks, setting the new state-of-art of 84.2% mIoU, 39.0% AP, and 65.5% PQ on test set. Additionally, equipped with MobileNetV3, Panoptic-DeepLab runs nearly in real-time with a single 1025 × 2049 image (15.8 frames per second), while achieving a competitive performance on Cityscapes (54.1 PQ% on test set). On Mapillary Vistas test set, our ensemble of six models attains 42.7% PQ, outperforming the challenge winner in 2018 by a healthy margin of 1.5%. Finally, our Panoptic-DeepLab also performs on par with several topdown approaches on the challenging COCO dataset. For the first time, we demonstrate a bottom-up approach could deliver state-of-the-art results on panoptic segmentation.

论文下载

论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Cheng_Panoptic-DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.pdf

算法链接

算法https://marketplace.huaweicloud.com/markets/aihub/modelhub/detail/?id=33d3239f-8f0b-4432-a842-f787662ed6a0

Notebookhttps://marketplace.huaweicloud.com/markets/aihub/notebook/detail/?id=02dad887-0bda-417d-a1f7-1b3762fef3f3

算法指南

算法指南
https://bbs.huaweicloud.com/forum/thread-95383-1-1.html

评论 0

登录后评论

    spy

    作者相关内容

    “挑战杯”揭榜挂帅-华为云专项赛 疲劳/分神驾驶检测Baseline
    发布于23个月以前
    无人车大赛-baseline
    发布于33个月以前
    2022 船舶大赛ModelArts 操作指导
    发布于35个月以前
    AnimeGANv2动漫人脸实践
    发布于28个月以前
    在ModelArts上创建自己的算法-生成模型-在线推理(包括详细代码)
    发布于46个月以前

    暂无数据

    热门内容推荐

    快速体验10个精选论文复现算法模型,赢取蓝牙音箱、体脂秤、ModelArts图书!
    WAYNE 发布于44个月以前
    华为云AI论文精读会2021第二十期:轻量化神经网络MobileNet系列论文精读
    euuufe 发布于41个月以前
    [华为云AI经典论文复现] AI Gallery CrowdDet算法使用介绍
    euuufe 发布于42个月以前
    Fast-SCNN: Fast Semantic Segmentation Network
    spy 发布于44个月以前
    华为云AI论文精读会2021第四期:Dynamic RCNN:一种有效提升RCNN系列网络表现的动态训练方法
    euuufe 发布于42个月以前

    暂无数据